skip to main content


Search for: All records

Creators/Authors contains: "Fkiaras, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D 0 D 0 π + mass spectrum just below the D *+ D 0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + tetraquark with a quark content of $${{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}\overline{{{{{{\rm{u}}}}}}}\overline{{{{{{\rm{d}}}}}}}$$ c c u ¯ d ¯ and spin-parity quantum numbers J P  = 1 + . Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D *+ mesons is consistent with the observed D 0 π + mass distribution. To analyse the mass of the resonance and its coupling to the D * D system, a dedicated model is developed under the assumption of an isoscalar axial-vector $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state decaying to the D * D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the $${{{{{{\rm{T}}}}}}}_{{{{{{\rm{c}}}}}}{{{{{\rm{c}}}}}}}^{+}$$ T c c + state. In addition, an unexpected dependence of the production rate on track multiplicity is observed. 
    more » « less
  2. A bstract A precision measurement of the Z boson production cross-section at $$ \sqrt{\mathrm{s}} $$ s = 13 TeV in the forward region is presented, using pp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb − 1 . The production cross-section is measured using Z → μ + μ − events within the fiducial region defined as pseudorapidity 2 . 0 < η < 4 . 5 and transverse momentum p T > 20 GeV /c for both muons and dimuon invariant mass 60 < M μμ < 120 GeV /c 2 . The integrated cross-section is determined to be $$ \sigma \left(Z\to {\mu}^{+}{\mu}^{-}\right)=196.4\pm 0.2\pm 1.6\pm 3.9\ \mathrm{pb}, $$ σ Z → μ + μ − = 196.4 ± 0.2 ± 1.6 ± 3.9 pb , where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties. 
    more » « less
  3. Abstract Conventional, hadronic matter consists of baryons and mesons made of three quarks and a quark–antiquark pair, respectively 1,2 . Here, we report the observation of a hadronic state containing four quarks in the Large Hadron Collider beauty experiment. This so-called tetraquark contains two charm quarks, a $$\overline{{{{{u}}}}}$$ u ¯ and a $$\overline{{{{{d}}}}}$$ d ¯ quark. This exotic state has a mass of approximately 3,875 MeV and manifests as a narrow peak in the mass spectrum of D 0 D 0 π + mesons just below the D *+ D 0 mass threshold. The near-threshold mass together with the narrow width reveals the resonance nature of the state. 
    more » « less
  4. A bstract The $$ {\varXi}_{cc}^{++}\to {\varXi}_c^{\prime +}{\pi}^{+} $$ Ξ cc + + → Ξ c ′ + π + decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5 . 4 fb − 1. The $$ {\varXi}_{cc}^{++}\to {\varXi}_c^{\prime +}{\pi}^{+} $$ Ξ cc + + → Ξ c ′ + π + decay is reconstructed partially, where the photon from the $$ {\varXi}_c^{\prime +}\to {\varXi}_c^{+}\gamma $$ Ξ c ′ + → Ξ c + γ decay is not reconstructed and the pK − π + final state of the $$ {\varXi}_c^{+} $$ Ξ c + baryon is employed. The $$ {\varXi}_{cc}^{++}\to {\varXi}_c^{\prime +}{\pi}^{+} $$ Ξ cc + + → Ξ c ′ + π + branching fraction relative to that of the $$ {\varXi}_{cc}^{++}\to {\varXi}_c^{+}{\pi}^{+} $$ Ξ cc + + → Ξ c + π + decay is measured to be 1 . 41 ± 0 . 17 ± 0 . 10, where the first uncertainty is statistical and the second systematic. 
    more » « less